
Product Catalogue
"The organisation that needs better Software Engineering,

but hasn’t bought it, is already paying for it."

Survey results from a recent 3-month client engagement: +30% improvement.

"Transcend merely learning about programming;
master the art of conceptualising and strategising in programming."

Products & Services
● Talks
● Workshops
● Programming Tips

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

● For Hire

Notes:

● All prices are in New Zealand Dollars and exclude 15% Goods & Services Tax (G.S.T.)
● Non-New Zealand purchases will be exempt from G.S.T.
● Auckland training sessions can also be delivered on-site. A surcharge of 20% applies

for in-person training.
● Olaf may be available for other software engineering consulting engagements -

training, advisory or otherwise. If this is of interest, please send an email to
olaf@codecoach.co.nz.

"Everything (including software!) should be made as simple as possible,
but not simpler."

Talks
These presentations are delivered in a lecture format and cover a variety of topics related to
software craftsmanship. After each talk, there is a Q & A session and discussion. The main
goal of these talks is to introduce useful strategies for creating computer systems that are
easy to maintain and comprehend. They are suitable for individuals with any level of skill,
unless stated otherwise, and offer great benefits for bigger groups.

Duration: Circa 2 hours
Attendees: No limit

Prices:
● Single talk: $2,500
● 5-talk bundle: $10,000
● 10-talk bundle: $15,000

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz
mailto:olaf@codecoach.co.nz

Available Talks
Please check out my list of available presentations. Click on the link to navigate to a brief
description. If you are interested in a talk on a topic not covered, feel free to send me an
email at olaf@codecoach.co.nz with your requirements.

Software Craftsmanship
● Why Software Craftsmanship?

Clean Code
● Clean Code - An Introduction
● Clean Code - Functions and Methods
● Clean Code - Comments and Exceptions

The SOLID Principles
● The Purpose of SOLID & The Single Responsibility Principle
● The Open-Closed Principle & The Liskov Substitution Principle
● The Interface Segregation Principle & The Dependency Inversion Principle

Object-Oriented Programming
● Inheritance versus Composition

Components
● Components & Their Effect on System Design

Architecture
● On Software Architecture & Clean Architecture

Unit Testing
● Writing Effective Unit Tests (NEW)

Test-Driven Development (TDD)
● A Short Introduction to TDD
● Core Concepts of TDD

Overcoming Legacy Code
● A Short Introduction to Working Safely with Legacy Code

Design Patterns
● Creational Design Patterns
● Structural Design Patterns
● Behavioural Design Patterns

Enterprise Architecture Patterns
● The Event Sourcing Enterprise Architecture Pattern (NEW)

Personal Development (NEW)
● Building Personal Resilience (NEW)

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz
mailto:olaf@codecoach.co.nz

Talk Descriptions

General
Talk: Why Software Craftsmanship?

Learn about the single factor making software development harder over time.
Discover how to generate a faster time-to-market while reducing the total cost of
ownership of your bespoke software systems.

Clean Code

Talk: Clean Code - An Introduction

Discover the guiding principles governing highly maintainable source
code—Clean Code. Learn how to use variables and references the Clean
Code-way. This talk delves into common mistakes developers make in this area.

Talk: Clean Code - Functions and Methods

How should you structure functions and methods? What is the recommended
maximum length of a subroutine? How many things should it do? Welcome to
the talk that will answer fundamental questions regarding function structure and
behaviour.

Talk: Clean Code - Comments and Exceptions

Should we write as many explanatory comments as possible? The answer may
surprise you. How much should you comment code? When is it a good idea to
have a comment, and when not?
Many developers are confused by exceptions. Get clarity on exceptions—when
and how to use them and how to manage them—exceptions made easy!

The SOLID Principles

Talk: The Purpose of SOLID & The Single Responsibility Principle

What are the SOLID Principles trying to achieve? At what level of software do
they apply? What is the Single Responsibility Principle? The answer often
surprises developers who thought they understood this principle.

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

Talk: The Open-Closed Principle & The Liskov Substitution Principle

The Open-Closed Principle is crucial to building modular, pluggable software
systems. The Liskov Substitution Principle perplexes even seasoned software
developers. This talk will explain both principles' significance in simple terms and
with code examples.

Talk: The Interface Segregation Principle & The Dependency Inversion
Principle

In this talk, you'll discover the genius of the Interface Segregation and
Dependency Inversion Principles. Both principles apply at the class level and
play a crucial role in software architecture and the design of highly flexible
systems.

Object-Oriented Programming

Talk: Inheritance versus Composition

What is Inheritance? What is Composition? Inheritance is so useful, yet you probably
want to use Composition in most situations. Why? If you love Inheritance but want to
avoid problems, you will want to come to this illuminating session.

Components

Talk: Components & Their Effect on System Design

What are Components? Why are they so crucial to the flexibility of our systems?
Constructing components with excessive coupling will cause problems in the
future. Learn how to partition systems into sensible deployment units to harness
the power of pluggability.

Architecture

Talk: Software Architecture & Clean Architecture

Arguably one of my best talks on how to structure software systems. Learn the
answers to questions like: What is Software Architecture? Is Software
Architecture still important? What is Clean Architecture? How should we begin
writing software to maximise system pluggability? The target audience of this talk

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

is more experienced, senior developers. Nonetheless, less experienced
programmers will benefit from learning how to structure systems too.

Unit Testing

Talk: Writing Effective Unit Tests (NEW)

What is a unit test? How does a unit test differ from other automated tests?
Arrange-Act-Assert. What does it mean to ‘unit test one thing’? How do we
create great, i.e. imminently readable and maintainable, concise unit tests? How
should we arrange unit tests? What are Forward-Looking Tests? How do we
elegantly manage unit tests for code that connects to the database (spoiler: we
don’t - we use something called a ‘Fake Collaborator’)? If there is time, a bit on
TDD and/or unit testing in Legacy Code.

Test-Driven Development (TDD)

Talk: A Short Introduction to TDD

Are you interested in TDD and how this innovative and iterative process lets you
write clear, concise and simple code? In this talk, you will discover the lifecycle
and rules of the TDD process. You'll learn how to write good unit tests. Includes
a demonstration of TDD.

Talk: Core Concepts of TDD

After recapping the principles of TDD, this talk delves into the nitty-gritty of
writing sophisticated modules accessing the database and other services. This
talk touches on software architecture and how to partition software systems.
Learn about fake collaborators and how to use them—confused about the
difference between a Stub and a Mock? No longer.

Overcoming Legacy Code

Talk: A Short Introduction to Working Safely with Legacy Code

Working with legacy code is not an exciting prospect for software engineers.
Many would rather leave their jobs than work on a seriously impaired legacy
codebase—and some do. It's easy to break a legacy system
unexpectedly—even with minor changes. But it doesn’t have to be this way.

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

This important talk unveils an innovative approach to safely modifying legacy
code. Consistently using this proven process will allow a team to get on top of
even the worst legacy code within weeks and months.

Design Patterns

Talk: Creational Design Patterns

Learn about the importance of creational design patterns—patterns used to
create one or more objects: Singleton, Monostate, Abstract Factory, Factory,
Factory Method.

Talk: Structural Design Patterns

Structuring and partitioning our software well is crucial for ongoing
maintainability. Such structure starts with the proper relationship between
entities. Discover the different structural design patterns and when to use them:
Adapter, Proxy, Facade, Humble Object, Decorator, Composition.

Talk: Behavioural Design Patterns

Behavioural design patterns affect communications and messaging between
objects. Common behavioural patterns are Null Object, Strategy, Template
Method, Command. This pattern category is relevant for the flexibility of program
flow.

Talk: The Event Sourcing Enterprise Architecture Pattern (NEW)

What is Event Sourcing? What problems does it solve, and when would you want
to use it? How does Event Sourcing differ from CQRS? What are the
disadvantages of Event Sourcing? This talk includes a demo of a simple Event
Sourcing system. You'll see not only the power of this pattern but also the
drawbacks. Recommended.

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

Personal Development (NEW)

Talk: Building Personal Resilience (NEW)

Discover how to strengthen your ability to bounce back from adversity in this
engaging presentation on building resilience. Learn practical strategies and
techniques to help you cope with stress, overcome obstacles, and thrive in the
face of challenges. Don't miss out on this empowering opportunity to enhance
your resilience and well-being!

"Software engineers are among the highest-paid people at our organisations.
Why let them do their work with outdated ideas and low effectiveness?
It’s like driving a Porsche at walking pace—it doesn’t make sense."

Workshops
Each of my workshop courses thoroughly explores a particular Software Engineering topic
and features a combination of theory, demo and hands-on lab experience. The objective of
all of our CodeCoach workshops is to provide deep insights and superior long-term
comprehension.

Duration: 2-3 days (or 4-6 half-days)
Participants: Up to 16

Available Workshops

Clean Code

Workshop: Writing Clean Code

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

Clean Code is the first rung on the ladder to software engineering excellence.
Unfortunately, writing clean and simple code is often overlooked as a means of
remarkably improving code quality and program maintainability. In this workshop,
you will discover that applying high-level principles to your coding activity is more
beneficial than conforming to rigid rules—and you'll get the rules as well.

Even many experienced developers do not know and apply this innovative set of
coding guidelines. Learn how to program well and be rewarded with simplicity in
your code. Features, theory, demo and hands-on lab.

Target Audience: Novice to Competent
Duration: 2 Full days or 4 Half-days (needn't be successive days)
Participants: Up to 16
Price: $12,000

The SOLID Principles

Workshop: SOLID In Action

It is with good reason expert software engineers hold the SOLID Principles in
high regard. These principles are foundational to constructing software that is
easy to change, easy to understand and reusable. After this workshop, you'll
know and appreciate all the SOLID Principles.

You'll learn why code in violation of SOLID is challenging to work with and why
compliant code is easy to modify and maintain. If you are unfamiliar with SOLID,
this workshop will add essential expertise to your software engineering toolbelt.
Features theory, code demonstrations and hands-on lab.

Target Audience: Advanced Beginner to Proficient
Duration: 2 Full days or 4 Half-days (needn't be successive days)
Participants: Up to 16
Price: $12,000

Test-Driven Development (TDD)

Workshop: Complete TDD

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

Have you had enough of messy, hard-to-read code? Do you want to learn how to
write clean, beautiful software that's easy to understand and where you can
make changes quickly and effectively? This workshop includes live
demonstrations of how to apply TDD to write real-world code. You'll get to use
your new knowledge in a hands-on TDD programming lab.

Whether you are new to programming or an old hand, this workshop will show
you an iterative programming approach that can significantly reduce code
complexity compared to developing the traditional way. Learn about this novel
technique taking the software development industry by storm! This workshop is
suitable for programmers new to TDD and those with some TDD experience who
would like a refresher.

Target Audience: Novice to Proficient
Duration: 2 Full days or 4 Half-days (needn't be successive days)
Participants: Up to 16
Price: $12,000

Overcoming Legacy Code

Workshop: Working Safely with Legacy Code

Legacy Code is taxing to work with at the best of times. As developers, we try to
avoid making changes to Legacy Code. But sometimes we have to, and when
we do, we inevitably break existing behaviour. Understandably, our customers
will be angry, and our managers unhappy. What is Legacy Code? Why is working
with it so demanding?

Is there a better way—a safer way—to work with Legacy Code? Yes, there is!
This workshop will show you how to modify Legacy Code safely. The learning
process will allow you to make the changes you want and open the door to
continued safe refactoring and code improvements. This workshop includes
theory, demo and hands-on lab.

Competence Level: Advanced Beginner to Proficient
Duration: 3 Full days or 6 Half-days (needn't be successive days)
Participants: Up to 16
Price: $18,000

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

Software Architecture

Workshop: Principles of Software Architecture

What is Software Architecture? Is it still relevant? Why? Does Software
Architecture only apply at the highest system level? Where and how do software
developers affect architectural design? How do we create modular and pluggable
systems? Is Microservices Architecture an architecture? (Spoiler: It isn't.) This
workshop answers all those and your Software Architecture questions.

Learn about Clean Architecture, a system design philosophy that turns software
engineering into 'Lego for Adults'. Discover the secret to writing highly
maintainable software. Learn why partitioning software using Clean Architecture
while writing the code with Test-Driven Development (TDD) is a software
engineering superpower!

Competence Level: Competent to Expert
Duration: 3 Full days or 6 Half-days (needn't be successive days)
Participants: Up to 16
Price: $18,000

Programming Tips
Developers can go out and actively learn how to be more productive. But are they going to
do it? Human nature, being what it is, wants things to be easy.

Why not make learning to masterfully program really easy for your software engineers?
Have a short programming tip email arrive in their inbox each workday. Each tip is only
around 500 words and explains an important, high-value coding concept.

We have a cache of over 250 programming tips, and we are still creating more.

Improve your programmers one daily programming tip at a time!

If your software engineers absorb even 1% of the programming tips, this investment

will have paid for itself!

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz

● RISKFREE - Try before you Buy! This service is FREE for the first 10 days.

● After that only $2 per email recipient per day.

● Minimum of 10 developer recipients, increasing in tranches of 10

recipients.

● Bulk pricing for 100 or more recipients

Please get in touch (olaf@codecoach.co.nz) if you would like to learn more, receive

sample emails, or book this service.

For Hire
This is the most intensive learning experience I offer. I teach essential software engineering
principles during mob and pair programming with a team of developers on their own code.

Unlike the limited exposure to software engineering best practices during a workshop, this
close-quarter training greatly increases the capacity for retention, as the material can be
applied immediately in a familiar context.

Price:
● Daily rate: $4,000

Note: I offer a discount for longer engagements

Email: olaf@codecoach.co.nz Mob: +6421430003 Website: https://codecoach.co.nz

mailto:olaf@codecoach.co.nz
mailto:olaf@codecoach.co.nz

